
Overview

The ECP ExaWorks project was funded for a phase-I effort starting in August 2020 to show the

feasibility of creating an extensible software development kit (SDK) for developing exascale

workflows. Part of the Phase-I charge was to conduct a survey of ECP teams to understand

their workflow requirements and challenges. The survey was conducted in two parts: a short

online survey and targeted deep-dive interviews with a subset of teams to assess project needs.

This report details the survey questions, summarizes the responses, and compares them with

two other workflow surveys: the workflow survey conducted in the first year of ECP, and a

survey organized by WorkflowsRI, an NSF-funded project focused on investigating community-

based research infrastructure.

Prior Surveys

ECP Workflow Survey June 2017: the first workflow surveyed carried out across the

applications teams in ECP occurred between March and April 2017. The aim was to assess

workflow needs of application teams across the project. The survey received 13 responses out

of the 22 application projects that the survey was sent to. The interpretation of the survey lead

to the following high level findings:

● Half the responses intended to combine multiple applications into workflows

● There were a wide-range of task sizes (number of processors) and durations. While

most were longer (>1 hour), there were 5 projects that had many short tasks which

would be challenging to scale without new software support

● Most responses indicated that a combination of MPI and files would be used to

orchestrate their workflows, indicating that an ad-hoc or custom designed infrastructure

would likely be used in many cases

● When asked about workflow systems and workflow managers, only 1 project listed an

existing solution. Most either did not plan to use a pre-existing workflow solution, or had

not reached a stage of planning in their project where a solution had been selected

● Most teams (~10 out of 13) indicated Python as the main language they planned to use

for defining workflows, with the Unix command line as the preferred user interface for

invoking them

The assessment of the ECP ExaWorks team is that at the time the survey was conducted, most

teams were at early stages of physics and model development, and had not begun to tackle

their longer term workflow requirements, preferring to rely on existing methods (Python and

shell scripts) to compose workflows.

Survey Structure

The ExaWorks survey was conducted in two phases: first a questionnaire was sent to 24 ECP

applications teams and the 5 co-design centers. Out of the 15 responses we identified five

teams to interview in more depth. Our selection criteria emphasized teams that were

performing complex workflows and that had either written or were leveraging workflow

management tools. Our goal with these interviews was to broaden our understanding of these

workflows and the toolsets employed by these teams. We note that ExaWorks SDK

technologies are currently being leveraged by CANDLE, ExaLearn, and ExaSky, so the

interviews with the selected teams were crucial in understanding additional workflows of

importance to ECP.

Responses and Interviews Summarized

Figure 1: word cloud showing the key-terms received from respondents, indicating a

large usage of unix scripts and ad-hoc tools.

Responses to the survey indicate that many ECP application teams are orchestrating workflows

using homegrown scripts (shell, Python, Perl) and tools like Make. Some teams reported usage

of workflow tools: Airflow, Cheetah, Fireworks, libEnsemble, Merlin, Nexus, Parsl, and

Savannah. Note, we allowed respondents to define ‘workflow tool’ broadly, and this results in a

mixture of general workflow tools and tools under development for particular sub-domains in

HPC. We will summarize the initial survey results by each question, and then go into some

detail on the use-cases and learnings obtained from the in-depth team interviews.

Workflow motifs represented in the reponses:

- Single simulations: often scaling to extreme scale single simulations

- Ensembles: by far the most common motif reported was generating ensembles of runs,

typically via statically defined parameter studies, parameter sweeps and convergence

studies

- Analysis: experiment-driven workflows which involve the instantiation of a mixture of

short/small jobs and larger analysis jobs.

- Machine Learning / Dynamic: in these workflows the set of simulations that will be run

is not known at the time the work is submitted to compute resources. These are the

most advanced workflows, and the most likely to utilize customized or domain-specific

infrastructures.

Internal Orchestration:

This question was aimed at understanding the need for tasks in a workflow to interact with each

other and also whether tasks in a single job allocation might need to interact. Overall,

responses indicated very little usage of orchestration among respondents. One team does

utilize streaming/service oriented workflows where task to task interaction was required.

External Orchestration:

This question was aimed at understanding the extent to which teams utilized multiple machines,

or executed workflows across multiple machines. The responses were evenly divided, with

about half of the respondents indicating that their workflows span systems or that they would

run them in that mode if they had a workflow tool that makes it possible to do so. In most cases,

the usage of multiple systems was driven by the need to access as much resource as possible

and to reduce the overall time for a given workflow, rather than a differentiation based on

hardware or data locality. It is also the case that some teams have ensembles that span

multiple job time limits, and so must submit several batch jobs to complete a single ensemble of

simulations, and they classed this as a case of external orchestration.

Homogeneous vs. Heterogeneous tasks:

In general, most respondents indicated a large dynamic range of job sizes. Reasons for this

range include: scaling/convergence studies, simulation vs. analysis jobs, inclusion of ML and

simulation tasks. In general, we find that the more complex and dynamic the workflow, the

more likely it is that teams will report high levels of task heterogeneity.

Key take-aways from the Interviews:

Supporting complex dynamic workflows across multiple machines, and porting to new machines

is expensive in terms of developer time. Each main, even those that outwardly appear similar

(e.g. Linux OS, Slurm batch scheduler, etc.), require customization in the workflow scripts and

projects that needed to run at multiple facilities have developed abstraction layers to support

these customizations. A key take-away is that attacking the lower layers of the workflow

management stack can bring increased portability and reduce porting costs for teams, which

lead to ExaWorks focusing on the J/PSI portability layer for schedulers.

Related to this is that robustness is both a pain-point and oftentimes a determining factor in

whether a team will adopt a third party workflow technology or create their own bespoke

capability. Accordingly, ExaWorks identified a well resourced effort to build an SDK with widely

deployed testing via continuous integration technologies as a key enabler for the adoption of

third party workflow technologies by application teams.

